skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sleboda, David A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Selection for increased muscle mass in domestic turkeys has resulted in muscles twice the size of those found in wild turkeys. This study characterizes muscle structural changes as well as functional differences in muscle performance associated with selection for increased muscle mass. We compared peak isometric force production, whole muscle and individual fiber cross-sectional area (CSA), connective tissue collagen concentration and structure of the lateral gastrocnemius (LG) muscle in wild and adult domestic turkeys. We also explored changes with age between juvenile and adult domestic turkeys. We found that the domestic turkey’s LG muscle can produce the same force per cross-sectional area as a wild turkey; however, due to scaling, domestic adults produce less force per unit body mass. Domestic turkey muscle fibers were slightly smaller in CSA (3802 ± 2223 μm2) than those of the wild turkey (4014 ± 1831 μm2, p = 0.013), indicating that the absolutely larger domestic turkey muscles are a result of an increased number of smaller fibers. Collagen concentration in domestic turkey muscle (4.19 ± 1.58 μg hydroxyproline/mg muscle) was significantly lower than in the wild turkeys (6.23 ± 0.63 μg/mg, p = 0.0275), with visible differences in endomysium texture, observed via scanning electron microscopy. Selection for increased muscle mass has altered the structure of the LG muscle; however, scaling likely contributes more to hind limb functional differences observed in the domestic turkey. 
    more » « less
  2. Muscles are composite structures. The protein filaments responsible for force production are bundled within fluid-filled cells, and these cells are wrapped in ordered sleeves of fibrous collagen. Recent models suggest that the mechanical interaction between the intracellular fluid and extracellular collagen is essential to force production in passive skeletal muscle, allowing the material stiffness of extracellular collagen to contribute to passive muscle force at physiologically relevant muscle lengths. Such models lead to the prediction, tested here, that expansion of the fluid compartment within muscles should drive forceful muscle shortening, resulting in the production of mechanical work unassociated with contractile activity. We tested this prediction by experimentally increasing the fluid volumes of isolated bullfrog semimembranosus muscles via osmotically hypotonic bathing solutions. Over time, passive muscles bathed in hypotonic solution widened by 16.44 ± 3.66% (mean ± s.d.) as they took on fluid. Concurrently, muscles shortened by 2.13 ± 0.75% along their line of action, displacing a force-regulated servomotor and doing measurable mechanical work. This behaviour contradicts the expectation for an isotropic biological tissue that would lengthen when internally pressurized, suggesting a functional mechanism analogous to that of engineered pneumatic actuators and highlighting the significance of three-dimensional force transmission in skeletal muscle. 
    more » « less
  3. Fluid fills intracellular, extracellular, and capillary spaces within muscle. During normal physiological activity, intramuscular fluid pressures develop as muscle exerts a portion of its developed force internally. These pressures, typically ranging between 10 and 250 mmHg, are rarely considered in mechanical models of muscle but have the potential to affect performance by influencing force and work produced during contraction. Here, we test a model of muscle structure in which intramuscular pressure directly influences contractile force. Using a pneumatic cuff, we pressurize muscle midcontraction at 260 mmHg and report the effect on isometric force. Pressurization reduced isometric force at short muscle lengths (e.g., −11.87% of P0at 0.9 L0), increased force at long lengths (e.g., +3.08% of P0at 1.25 L0), but had no effect at intermediate muscle lengths ∼1.1–1.15 L0. This variable response to pressurization was qualitatively mimicked by simple physical models of muscle morphology that displayed negative, positive, or neutral responses to pressurization depending on the orientation of reinforcing fibers representing extracellular matrix collagen. These findings show that pressurization can have immediate, significant effects on muscle contractile force and suggest that forces transmitted to the extracellular matrix via pressurized fluid may be important, but largely unacknowledged, determinants of muscle performance in vivo. 
    more » « less
  4. Muscle contraction is a three-dimensional process, as anyone who has observed a bulging muscle knows. Recent studies suggest that the three-dimensional nature of muscle contraction influences its mechanical output. Shape changes and radial forces appear to be important across scales of organization. Muscle architectural gearing is an emerging example of this process. 
    more » « less
  5. Abstract Existing data suggest the extracellular matrix (ECM) of vertebrate skeletal muscle consists of several morphologically distinct layers: an endomysium, perimysium, and epimysium surrounding muscle fibers, fascicles, and whole muscles, respectively. These ECM layers are hypothesized to serve important functional roles within muscle, influencing passive mechanics, providing avenues for force transmission, and influencing dynamic shape changes during contraction. The morphology of the skeletal muscle ECM is well described in mammals and birds; however, ECM morphology in other vertebrate groups including amphibians, fish, and reptiles remains largely unexamined. It remains unclear whether a multilayered ECM is a common feature of vertebrate skeletal muscle, and whether functional roles attributed to the ECM should be considered in mechanical analyses of non‐mammalian and non‐avian muscle. To explore the prevalence of a multilayered ECM, we used a cell maceration and scanning electron microscopy technique to visualize the organization of ECM collagen in muscle from six vertebrates: bullfrogs (Lithobates catesbeianus), turkeys (Meleagris gallopavo), alligators (Alligator mississippiensis), cane toads (Rhinella marina), laboratory mice (Mus musculus), and carp (Cyprinus carpio). All muscles studied contained a collagen‐reinforced ECM with multiple morphologically distinct layers. An endomysium surrounding muscle fibers was apparent in all samples. A perimysium surrounding groups of muscle fibers was apparent in all but carp epaxial muscle; a muscle anatomically, functionally, and phylogenetically distinct from the others studied. An epimysium was apparent in all samples taken at the muscle periphery. These findings show that a multilayered ECM is a common feature of vertebrate muscle and suggest that a functionally relevant ECM should be considered in mechanical models of vertebrate muscle generally. It remains unclear whether cross‐species variations in ECM architecture are the result of phylogenetic, anatomical, or functional differences, but understanding the influence of such variation on muscle mechanics may prove a fruitful area for future research. 
    more » « less